MONITORING SURFACE DEFORMATION USING SATELLITE DATA

Frano Četinić & Tom Rune Lauknes
IOGP Geomatics / Statoil Industry Day
Stavanger, Norway
26 April 2016
Overview

• Context

• Background radar satellites

• Methodology and techniques

• Product samples
 • Kuwait
 • Iceland

• Accuracy on measurements
Earth Observation Broker

A single location to discover and enhance uptake of Earth Observation (EO) products and services in the energy sector
Welcome to the EO Broker portal

The marketplace for images and services tailored to the Oil and Gas industry

Featured offers
Prototype version available for evaluation this summer

Register your interest or check out the video at

http://www.eobroker.com

or contact

Kim.Partington@Geocento.com
Challenge Tree linked to Subsidence Monitoring

Subsidence Monitoring

- Land motion relating to fault lines or other causes
 - OTM-001 Identifying effects of fault re-activation
 - OTM-020 Tracking groundwater tables
- Infrastructure Monitoring
 - OTM-006 Determine historical ground movement for infrastructure planning
 - OTM-008 Monitor ground movement along pipelines
 - OTM-010 Determine historical ground movement for pipeline routing
 - OTM-011 Surface infrastructure moving relative to sub-surface
- Reservoir Management
 - OTM-002 Tracking fluid migration in the sub-surface
 - OTM-003 Subsidence from reservoir drawdown
 - OTM-004 Regulatory verification relating to injection of tracking fluids
 - OTM-005 Technical verification relating to injection of tracking fluids
 - OTM-007 Identify communication between producing zones

CREDIT: EARCS, EO4OG
Example Surface Deformation product covering Stavanger

Satellite source: TerraSAR-/TanDEM-X, Airbus
Background radar Synthetic Aperture Radar (SAR) satellites 1(3)

Credit: European Space Agency (ESA)
Background radar (SAR) satellites 3(3)

Credit: Norut
Data density is related to resolution of satellite imagery

Very High resolution satellite (TerraSAR-X)

Low resolution satellite (ERS-1)
Principles of Interferometric SAR (InSAR)

\[\Delta r = R_2 - R_1 \]

Phase shift

\[\theta \]
Example 1: Sentinel-1, InSAR Feasibility (Coherence) Map, Kuwait

Legend

Ground conditions for InSAR

- Good
- Very Good
- Excellent
Example 2: Sentinel-1, InSAR Feasibility (Coherence) Map, Iceland

Legend
Ground conditions for InSAR

- Good
- Very Good
- Excellent
Different InSAR time-series techniques can be applied, depending on ground conditions.
Example 3: IDDP Geothermal R&D project, Reykjanes, Iceland

Iceland Deep Drilling Project (IDDP)
- Geothermal R&D project
- Initiative est. in 2000 by Icelandic energy companies
- Statoil joined in 2008
- Source: http://iddp.is/
Example 3: IDDP Geothermal R&D project, Reykjanes, Iceland
Example 3: Sentinel-1, Time-series Surface Deformation data, Reykjanes, Iceland
Example 3: Sentinel-1, Time-series Surface Deformation data, Reykjaness, Iceland, 2015-2017
Example 3: Sentinel-1, Time-series Surface Deformation data, Reykjaness, Iceland, 2016-2017
Millimetre to sub-millimetre accuracy on measurements can be achieved.