Global Water Resources: Human and Climate Impacts over the 21st Century

MOHAMAD HEJAZI ON BEHALF OF PNNL TEAM

THE JOINT GLOBAL CHANGE RESEARCH INSTITUTE
PACIFIC NORTHWEST NATIONAL LABORATORY
COLLEGE PARK, MARYLAND

September 27, 2018
Research questions

- How will climate change impact water availability and scarcity in the future?
- How will the coevolution of water-energy-land-climate-economy systems affect water scarcity and groundwater depletion rates across the globe?
- What are the relative contributions of climate and human systems on water scarcity regionally and globally?
Future Changes in Mean Precipitation

- Changes in precipitation in a warming world will not be uniform.
- High latitudes and the equatorial Pacific are likely to experience an increase in annual mean precipitation by the end of this century under the RCP8.5 scenario.
- Many mid-latitude and subtropical dry regions, mean precipitation will likely decrease, while in many mid-latitude wet regions, mean precipitation will likely increase under the RCP8.5 scenario.
Climate impact on water supplies

Ensemble model simulation with 11 global hydrological models (GHMs), 5 global climate models (GCMs) under RCP 8.5 emission scenarios

Schewe et al. (2014; PNAS)

Relative change in annual discharge at 2 °C
Climate impact on water supplies

Ensemble model simulation with 11 global hydrological models (GHMs), 5 global climate models (GCMs) under RCP 8.5 emission scenarios

Schewe et al. (2014; PNAS)

Relative change in annual discharge at 3 °C
Uncertainty is comparable between hydrologic and climate models

Ratio of GCM variance to total variance

GHM variance predominates

GCM variance predominates
But what about humans? How much water human expect to demand?

Based on Shiklomanov, I., IWRA Water International Vol 25 (1), March 2000
A quarter of the world’s people live in areas characterized by physical water scarcity. One billion live in basins that face economic scarcity.

Source: Stockholm Environment Institute (SEI) and Stockholm International Water Institute (SIWI)
And we are increasingly depleting our groundwater resources/reserves

- Water supplies and demands are variable in space & time and are generally out of phase
- Dependence on non-traditional water sources (depletable groundwater, desalinated water, water reuse, etc.)
Population projections over the 21st century under the Shared Socioeconomic Pathways (SSPs)

Source: KC and Lutz 2017
Projections of Water-Energy-Land Systems over the 21st Century
Relative change in human water consumption

2100 – 2010; SSP2

Wada and Bierkens (2014; ERL)
The future could unfold in many different ways - Global primary energy by fuel
Mitigating climate change might increase water scarcity: Avoiding unintended consequences!!

Water deficit is projected to increase more with climate change mitigation that favors biomass.
Climate change also impacts water demands in many ways

- **Energy Demand**: Increases in electricity demand, decreases in natural gas demand
- **Hydropower**: Changes in production of hydropower
- **Thermal Power**: Decreases in thermal power production
- **Agriculture**: Changes in productivity of land, bioenergy supply, crop production, carbon sequestration
- **Water Supply**: Changes in water availability (globally and regionally)
Quantifying climate impact on water withdrawals

- A wide range of water withdrawals driven by the 5 SSPs
- Mitigation generally leads to higher water withdrawals
- Uncertainty in human system is far larger than in climate

Global water withdrawals under different SSPs/RCPs with/without climate impacts
Humans play a larger role in affecting water scarcity conditions in the future

Distribution of positive (reducing water scarcity) and negative (worsening water scarcity) impacts by climate (C) and human (H) systems by basin
Is groundwater no longer a viable backstop technology to solve the water scarcity problem in the 21st century?

► Annual global groundwater depletion rate (km3 year$^{-1}$) for 900 GCAM simulations, with the distributions of the time to peak, and the peak annual groundwater depletion rate during the 21st century.

► Probability that groundwater annual rate of depletion peaks and declines in the 21st century at the basin level (based on 900 simulations).
We present six strategies, or water-stress wedges, that collectively lead to a reduction in the population affected by water stress by 2050, despite an increasing population.

- Water productivity – crop per drop
- Irrigation efficiency – decrease losses
- Water use intensity – industry and domestic
- Population
- Reservoir storage
- Desalination

Different basins lend themselves to different measures for reducing water stress.

Wada et al. (2014), Nature Geoscience
Final remarks

- Climate change will impact water availability and scarcity conditions in the future (overall wetter, but with winners and losers)

- Climate also impacts water demands both directly and indirectly

- Humans dominate the water scarcity signal in most regions

- Groundwater resources won’t last forever – we are likely to see a peak and decline over the 21st century in groundwater depletion

- Importance of understanding the interlinkages between water and other systems (e.g., land, energy, economy) to understand the risks associated with future water scarcity conditions and to avoid unintended consequences when devising policies to achieve climate goals and SDGs.

- Some possible solutions to cope with the growing water scarcity problem (yield gap, technological change, irrigation efficiencies, trade, storage)
Thank you!

Mohamad I. Hejazi, Ph.D.
Research Scientist
Joint Global Change Research Institute
Pacific Northwest National Laboratory
University of Maryland, College Park
5825 University Research Court, Suite 3500
College Park, MD 20740
www.globalchange.umd.edu
mohamad.hejazi@pnnl.gov